
Method R Software White Paper № 1

A First Look at Using
Method R Workbench Software

By Cary Millsap, Method R Corporation

Audience: Developers of Oracle-based application software, Oracle database
administrators, Oracle performance analysts, and project leaders who care about Oracle
system performance.

Many people underestimate the value and overestimate the difficulty of Oracle tracing.
Tracing is unique in how well it directly connects objective performance data to end-
user performance experiences. This makes it the ideal bridge among a business’s users,
its software developers, and its operational runtime support staff. With the right
understanding and tools, tracing is no more difficult to obtain than other forms of Oracle
diagnostic data. This paper demonstrates how to use the Method R Workbench software
package to convert trace files into profiles, repair an improperly collected trace file, use
profiles to diagnose an Oracle-based software performance problem, predict the effect
of proposed remedies upon the end-user performance experience, fix the problem,
assess the fix for potential side-effects, and then measure the end-user experience after
the fix.

Contents
..The Trace Data Perspective 2

...Trace Data Difficulties 2
..The Case 3

...The Response Time Profile 4
..SQL*Net message from client and “Think Time” 5

..What’s Wrong with the Trace? 5
..Repairing the Trace 7
..Idle Events Revisited 9

..Analyzing the Profile Report 9
...Predicting the Improvement 13

...The Fix 14
..Results of the Fix 15

..Final Thoughts 16
...Further Reading 17

...About Method R Corporation 18

© 2012 Method R Corporation 1
Revised 2012-12-20

http://method-r.com/software/workbench
http://method-r.com/software/workbench

The Trace Data Perspective
Oracle professionals use many kinds of data to diagnose software performance
problems. My favorite is Oracle’s extended SQL trace feature. I use it almost exclusively.
Here’s why:

• It connects me directly to the user experience. When users describe performance
problems, they usually talk about experiences: “It takes 30 minutes to run the TPS
report. I want it to run in 1 minute like it used to.” I want performance data that
connects me directly to that user experience. I want to see what my user’s code did,
without being deceived by aggregations or distracted by activity outside the scope of
my analysis. Tracing gives me the richest available description of how an Oracle-
based application consumes time, and I can focus the measurement upon any user’s
experience that I want to measure. It’s the best data we have for connecting
developers and operators to the performance issues of the business.

• It allows me to predict what users will experience as I fix things. Before I start fixing
things, I want to know how much time each of the remedies I’m considering will save
for my user—in hours, minutes, and seconds. I need to be able to estimate the benefit
I’ll create before I start spending my time (or my customer’s money) trying things out.
Tracing helps me do that.

• It gives me the detail that I need. When I diagnose whether a system is working
efficiently, I need to see how the application’s code path works, in detail. Tracing
gives me a step-by-step account of the interaction between applications and their
databases. This lets me have very detailed conversations with application developers,
database administrators, operating system administrators, network administrators,
storage administrators, and so on, whenever I need to.

• It’s always there when I need it. I want performance data that I can access on every
version and every edition of Oracle, and I want to use the same diagnostic methods
and tools for all the Oracle systems I work on. The extended SQL trace feature is
available with every edition of the Oracle Database from Express Edition (XE) to
Exadata, in every release since 7.0, and I can use it regardless of which Oracle add-
ons you’ve bought.

• Tracing is completely programmable. An application developer can design programs
to make tracing really easy. You can even make programs trace themselves
automatically when they are most at risk of behaving poorly.

Trace Data Difficulties
Tracing connects me to the experiences my users are feeling, and it gives me advantages
of focus, predictability, detail, reliability, and control. However, using trace data is more
difficult than viewing data in a graphical dashboard. Certainly, without tools to aid you,
tracing is quite a bit more work. Here are some of the difficulties people have with
tracing:

• Activating and deactivating the tracing feature requires care. A subplot in this paper is
an example of this. Collecting trace data is quite easy; collecting the right trace data is
more challenging. However, learning how to collect trace data correctly is not a
significant obstacle for anyone willing to try. With tools like the Method R Trace
extension for the Oracle SQL Developer interactive development environment, the
Method R Instrumentation Library for Oracle (ILO), Oracle triggers, and applications
with tracing features built right in, tracing is no problem at all.

© 2012 Method R Corporation 2
Revised 2012-12-20

http://method-r.com/software/mrtrace
http://method-r.com/software/mrtrace
http://method-r.com/software/ilo
http://method-r.com/software/ilo

• To trace it, you’ll probably have to rerun it. When a user has a performance problem,
odds are that to get a trace file for the experience, you’ll have to run her program
again. Advocates of always-on diagnostics point this out as a significant limitation of
tracing. However, I don’t see it that way. To debug a problem (a performance error or
a functional error), you need a reproducible test case; if you don’t have one, then how
can you ever demonstrate that you’ve fixed the problem? A reproducible test case
thus is a requirement for a problem-solving project, and if you have one, then having
to run some program a second time isn’t a limitation.

• Finding and fetching the right trace file is tedious. If every time you need a trace file,
you have to talk to somebody (because your DBA won’t give you permissions to find
and fetch your trace file yourself), then getting trace files is not just tedious, it’s
agonizing. Even if you have all the privileges you need to go get your own trace files,
the mental context switch overhead of switching applications to find and transfer your
trace file from the database server to your desktop is just another unwanted friction in
your day. However, the burden of finding and fetching trace files can be eliminated
through software automation. Method R Trace makes the problem go away for
developers and analysts who use Oracle SQL Developer. Your application
programmers can make it go away, too; finding and fetching files is all programmable.

• Interpreting trace file data can be difficult. There aren’t many good references that
explain Oracle trace data, and anyway, you would never get much done if you had to
analyze 1-GB trace files with a spreadsheet and a text editor. Oracle’s tkprof is meant
to do some of the work for you, but there’s a lot it doesn’t do. The point of this paper
is to show how my company’s Method R Profiler and Method R Tools software can
help you learn everything your trace files can teach you.

None of these difficulties overwhelms the value of tracing, which allows me to connect
my technical measurements directly to the end-user’s performance experience.
Unfortunately, the inconveniences stop some people from trying to use trace data when
it would be the perfect data source for them.

My team and I—who use trace data almost every day—don’t like those inconveniences
any more than you would, so we’ve spent lots of time building tools to overcome all the
little bothers that go with tracing. This paper covers some of those tools and how we use
them. My aim is to show you how my colleagues and I trace Oracle-based software to
solve problems and make better software.

The Case
The case I’ll walk you through is a miniature replica of a problem that many of our
customers have had. The mistake I’ll describe is an easy one to make. Most tools are
poor at detecting it, and many DBAs don’t understand how to fix it.

Because I want to show you so many new things at once, I am going to use a very
simple sqlplus program to demonstrate the problem I want to describe. Please don’t be
too concerned about risks of oversimplification. More complicated programs suffer from
the same kind of problem that I’ll illustrate here, and those programs will relent to the
same kind of analysis that I’ll show you. ...Maybe, like many of our customers, you’ll
find out that your performance problems are simpler than you thought.

This case starts like most of the ones I’ve worked on: a user has complained that a
program he runs takes too long: about half a minute. He wants it to run faster. I asked
him to trace his experience, and he gave me a 25.7-MB trace file called slow.trc. Here
we go.

© 2012 Method R Corporation 3
Revised 2012-12-20

http://method-r.com/software/mrtrace
http://method-r.com/software/mrtrace
http://method-r.com/software/profiler
http://method-r.com/software/profiler
http://method-r.com/software/mrtools
http://method-r.com/software/mrtools

The Response Time Profile
The first thing I do with a trace file is run it through the Method R Profiler. The resulting
Profile Report is a 97-KB HTML document. It’s a few pages long, but hyperlinks make
the report easy to navigate. Section 1.1 of the report is a table called the Profile by
Subroutine. It explains the response time represented in the trace file, grouped by
subroutine calls that have been executed by the Oracle Database kernel.

Profile	
 by	
 subroutine	
 for	
 the	
 trace	
 file	
 that	
 I	
 had	
 hoped	
 would	
 describe	
 the	
 user’s	
 32-­‐second	
 experience.	
 A	
 thumbnail	
 of	
 the	
 entire	

Profile	
 Report	
 is	
 shown	
 at	
 right.

It’s bad news at the bottom of this profile, because I wanted an explanation for why the
user’s experience lasted about 32 seconds, but this table explains an 86.176-second
experience. This is not a measure of my user’s experience. Now I have to figure out
which data to pay attention to, and which to ignore.

The red subroutines named in the top of the report (the ones with the longest durations)
are where I always begin my investigation:

• SQL*Net message from client [think time] calls, quantity 2, consumed 54.415 seconds,
or 63.1% of the measured 86.176 seconds. Since there are only two, I can tell by the
min-max data that one is 26.294757 seconds long, and the other is
28.120454 seconds long.

• SQL*Net message from client calls, quantity 75,000, consumed 22.181 seconds, or
25.7% of the measured 86.176 seconds.

You may have been taught that you should ignore all SQL*Net message from client
events because they represent “database idle time.” In this case, it’s tempting to do that,
because obviously there’s more time accounted for here than I want; however, when
you work with profiles that describe user response time experiences, discarding all your
SQL*Net message from client calls is not what you’ll want to do.

Here, if I discard all the SQL*Net message from client duration, I’ll be left with an
explanation for only about 9 seconds of response time (86 − (54 + 22) = 9). That’s not
enough to explain my user’s 32-second experience. However, if I discard only the two
calls labeled “[think time],” what I’d have left would be just right:

86.176 Profile duration

–54.415 SQL*Net message from client [think time] duration

31.761 User’s experience duration

Tempting. ...But what would it mean to discard those two calls?

© 2012 Method R Corporation 4
Revised 2012-12-20

SQL*Net message from client and “Think Time”
The events that most Oracle documentation calls “wait events” are operating system
calls (syscalls) to which Oracle kernel developers have assigned special Oracle names.
For example, Oracle calls a pread on my Linux system a db file sequential read event; I
have verified this by using the Linux strace utility.

The durations that Oracle reports are syscall response times measured by the Oracle
kernel like this:

t0 = timestamp
Oracle kernel makes a syscall (for example, a pread)
t1 = timestamp
t1 − t0 is the measured duration of the call

When you’re tracing an Oracle process that makes syscalls, that process writes lines
beginning with the word “WAIT” into a trace file. For example, when an Oracle kernel
process completes a pread on my Linux system to read a block from a database file, it
writes a trace file line that looks like this:
WAIT	
 #5362568:	
 nam='db	
 file	
 sequential	
 read'	
 ela=	
 66	
 file#=4	
 block#=17964	
 blocks=1	
 obj#=115132	
 tim=1352932110079701

This line says that my db file sequential read call consumed 66 microseconds (μs) of
elapsed duration and concluded at 16:28:30.079701 CST on 2012-11-14. I know this
because the mrtim tool in the Method R Tools suite reports a human-readable date
and time for a given tim value.

Likewise, the following line means something similar:
WAIT	
 #5363184:	
 nam='SQL*Net	
 message	
 from	
 client'	
 ela=	
 246	
 driver	
 id=1413697536	
 #bytes=1	
 p3=0	
 obj#=115132	
 tim=1352932110223333

This means that the Oracle kernel executed a read call
upon the file handle to which my application client is
connected. This call consumed 246 μs of elapsed time and
concluded at 16:28:30.223333 CST on 2012-11-14.
SQL*Net message from client duration is no different from
any other duration in the following regard: if a call
contributes to a user’s response time experience, it is
important; otherwise, it is not.

So, the right question to ask is not whether an event is
“idle”; the right question is whether an event contributed
to a user’s response time experience. Some idle events
contribute to user response times, and some do not.

The name SQL*Net message from client with the string “[think time]” appended to it is a
name created by the Method R Profiler. By default, calls named this are defined as
SQL*Net message from client calls that have individual durations of 1.0 seconds or
longer. This definition is a Profiler configuration option that you can change if you want,
but most people never need to. When the Oracle Database blocks on a SQL*Net
message from client call for a second or more, it often means that time is being
consumed either by client-tier code path, or by a user’s brain. It’s time you may not
want in your profile.

What’s Wrong with the Trace?
My user’s experience lasted about 32 seconds, but my trace file explains an 86.176-
second experience. If I ignore the two SQL*Net message from client [think time] calls, it

© 2012 Method R Corporation 5
Revised 2012-12-20

If a call contributes to
a user’s response time
experience, it is
important; otherwise,
it is not.

looks like my profile will come out just right. Is it okay to ignore those two calls? Where
did they come from?

The two calls are the result of a mistake in how the trace file was collected. Here’s what
the trace file looks like:

 1.	
 Trace	
 file	
 /opt/oracle/diag/rdbms/v11202/V11202/trace/V11202_ora_24517.trc

 … # Events that happened before the user’s experience began are recorded here on lines 1 through 27.

 26.	

 2012-­‐11-­‐14	
 16:28:30.069
 27.	
 WAIT	
 #5184972:	
 nam='SQL*Net	
 message	
 from	
 client'	
 ela=	
 26294757	
 …	
 tim=1352932110069389

 … # Events that happened during the user’s experience happened here, on lines 28 through 225,318.

225319.	

 2012-­‐11-­‐14	
 16:29:29.720
225320.	
 WAIT	
 #5363184:	
 nam='SQL*Net	
 message	
 from	
 client'	
 ela=	
 28120454	
 …	
 tim=1352932169720041

 … # Events that happened after the user’s experience ended are recorded here on lines 225,319 through 225,676.

This trace file contains information about more time than just the user’s experience
because he collected it like this:

1. The user typed an alter session command from sqlplus  to enable the trace.

2. He executed the statement by pressing Enter.

3. He attended to an email for a few seconds.

4. The user typed the slow SQL statement into sqlplus.

5. He executed the statement by pressing Enter.

6. He returned again to his email.

7. He noticed that the statement had completed.

8. He exited sqlplus to disable the trace.

Sequence	
 diagram	
 illustrating	
 how	
 my	
 user	
 collected	
 the	
 86.176-­‐second	
 trace	
 file.

DB

tracing off

select * ...

tracing on

User

query completed

query started

experience

tracing enabled

tracing disabled

trace file

think time
line 225,320

think time
line 27

ᬡ

ᬠ

ᬟ

ᬞ
ᬝ

ᬜ

ᬛ
ᬚ

Here’s the problem: the experience I need to fix begins with step 5 and ends
somewhere during step 6, but the trace file explains everything from step 2 through
step 8. The two “think time” events dominate the illustration. The SQL*Net message from
client [think time] call on line 27 describes the duration of steps 3 through 5. The

© 2012 Method R Corporation 6
Revised 2012-12-20

SQL*Net message from client [think time] call on line 225,320 describes the duration
from when the statement completed until my user completed step 8.

User response time experiences usually contain short-latency SQL*Net message from
client calls; they’re the network roundtrips that represent normal communications
between an application and its database. However, multi-second SQL*Net message from
client calls usually indicate either a trace file that was collected carelessly or an
application tier that executes a lot of code path between database calls. In this case, it
was just a little bit of uninformed carelessness in how the trace file was created.

The Method R Profiler feature of grouping these think time calls into a separate row
from the other SQL*Net message from client calls helps me envision what the trace file
would look like if these calls weren’t in the profile. I can see exactly how much time
these two calls consumed, distinct from the time consumed by sub-second SQL*Net
message from client calls. However, I would really prefer to eliminate these calls
entirely; otherwise, I’ll have to subtract unwanted time and rework the percentages
every time I create a profile. They just complicate my analysis and make it more difficult
for me to explain to my colleagues what I’m doing.

So do I need to ask my user to rerun the trace? Or is there something else I can do?

Repairing the Trace
Just deleting calls from a trace file sounds easy, right? You could just fire up your favorite
text editor, find the two long-duration SQL*Net message from client call lines, delete
them, and then rerun the Profiler? Well, if you do that, you’ll get a nasty surprise:

Hand-­‐editing	
 the	
 trace	
 file	
 does	
 not	
 lead	
 to	
 a	
 profile	
 that	
 explains	
 the	
 user’s	
 32-­‐second	
 experience.

When you edit a trace file this way, the duration won’t change. In this case, the Profiler
still accounts for 86.176 seconds. The Profiler can tell that the clock is moving (because
each line in the trace file representing a dbcall or a syscall has a timestamp on it), but
now that I’ve deleted two lines, the trace file doesn’t give any way to account for the
durations of the two calls that elapsed.

It takes considerably more work to fix the trace file properly. Without a tool to do it for
me, this is the point in the project where I’d go back to the user for a better trace
file. ...But I never liked doing that. Users have better things to do than submit to what
sounds like perfectionist compulsions to capture trace data again and again until we get

© 2012 Method R Corporation 7
Revised 2012-12-20

it just exactly right. Surely, the original trace file has everything in there that I need; I
just need to do a better job of taking the nut out of the shell.

This problem is why we built the Method R Tools utility called mrcallrm. It takes a file
name and list of line numbers containing calls I wish weren’t in the file, and mrcallrm
sets their durations to zero. It also adjusts the appropriate dates and timestamps in the
trace file, to make it look as though those calls had run with zero-second latencies to
begin with.

So then, how do I know which line numbers to list? I’ve already shown you the numbers
of the lines I want to eliminate (27 and 225,320), but how did I figure it out? The
mrskew utility (part of Method R Tools) gives me exactly the report I need; it’s the
“Response time by line number for a given call name pattern” report. Running that
report on my slow.trc file, using the default regular expression pattern « SQL*Net
message from client » gives me the line numbers I want:
Response	
 time	
 by	
 line	
 number	
 for	
 given	
 call	
 name	
 pattern
mrskew	
 -­‐-­‐group=$line	
 -­‐-­‐glabel=LINE	
 -­‐-­‐name=SQL*Net	
 message	
 from	
 client	
 "…/slow.trc"	

2012-­‐11-­‐28T15:53:23.000926-­‐0600
Elapsed:	
 8.032000	
 s

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 LINE	
 	
 	
 DURATION	
 	
 	
 	
 	
 	
 	
 %	
 	
 	
 CALLS	
 	
 	
 	
 	
 	
 	
 MEAN	
 	
 	
 	
 	
 	
 	
 	
 MIN	
 	
 	
 	
 	
 	
 	
 	
 MAX
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
	
 	
 	
 	
 	
 	
 	
 	
 225320	
 	
 28.120454	
 	
 	
 36.7%	
 	
 	
 	
 	
 	
 	
 1	
 	
 28.120454	
 	
 28.120454	
 	
 28.120454
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 27	
 	
 26.294757	
 	
 	
 34.3%	
 	
 	
 	
 	
 	
 	
 1	
 	
 26.294757	
 	
 26.294757	
 	
 26.294757
	
 	
 	
 	
 	
 	
 	
 	
 128369	
 	
 	
 0.095116	
 	
 	
 	
 0.1%	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 0.095116	
 	
 	
 0.095116	
 	
 	
 0.095116
	
 	
 	
 	
 	
 	
 	
 	
 126077	
 	
 	
 0.085262	
 	
 	
 	
 0.1%	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 0.085262	
 	
 	
 0.085262	
 	
 	
 0.085262
	
 	
 	
 	
 	
 	
 	
 	
 136396	
 	
 	
 0.085224	
 	
 	
 	
 0.1%	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 0.085224	
 	
 	
 0.085224	
 	
 	
 0.085224
	
 	
 	
 	
 	
 	
 	
 	
 127223	
 	
 	
 0.085157	
 	
 	
 	
 0.1%	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 0.085157	
 	
 	
 0.085157	
 	
 	
 0.085157
	
 	
 	
 	
 	
 	
 	
 	
 134137	
 	
 	
 0.075118	
 	
 	
 	
 0.1%	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 0.075118	
 	
 	
 0.075118	
 	
 	
 0.075118
	
 	
 	
 	
 	
 	
 	
 	
 151048	
 	
 	
 0.075102	
 	
 	
 	
 0.1%	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 0.075102	
 	
 	
 0.075102	
 	
 	
 0.075102
	
 	
 	
 	
 	
 	
 	
 	
 124391	
 	
 	
 0.065070	
 	
 	
 	
 0.1%	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 0.065070	
 	
 	
 0.065070	
 	
 	
 0.065070
	
 	
 	
 	
 	
 	
 	
 	
 137472	
 	
 	
 0.064926	
 	
 	
 	
 0.1%	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 0.064926	
 	
 	
 0.064926	
 	
 	
 0.064926
	
 74,992	
 others	
 	
 21.550131	
 	
 	
 28.1%	
 	
 74,992	
 	
 	
 0.000287	
 	
 	
 0.000196	
 	
 	
 0.060859
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
TOTAL	
 (75,002)	
 	
 76.596317	
 	
 100.0%	
 	
 75,002	
 	
 	
 0.001021	
 	
 	
 0.000196	
 	
 28.120454

The first two calls listed here contribute nearly 30 seconds apiece, whereas each of the
remaining calls contributes less than 100 milliseconds apiece. The two high-latency
calls on lines 225,320 and 27 are my think time events that I want to eliminate, and the
other calls were part of my user’s response time. The mrcallrm command I need is thus:

mrcallrm	
 -­‐-­‐lines=225320,27	
 slow.trc	
 >slow-­‐mrcallrm.trc

This command creates a new file called slow-mrcallrm.trc that still contains the two
high-latency SQL*Net message from client calls, but now those calls’ durations have
been set to zero, and the clock values throughout the file have been adjusted. Profiling
this file gives the result I want.

Correcting	
 the	
 trace	
 file	
 with	
 mrcallrm	
 does	
 create	
 a	
 profile	
 by	
 subroutine	
 that	
 explains	
 the	
 32-­‐second	
 experience.

© 2012 Method R Corporation 8
Revised 2012-12-20

Finally, I have an explanation for exactly the 31.761 seconds I want to explain. I can
describe exactly where my user’s time has gone. ...But ugh: the profile shows that
69.8% of his time was consumed by SQL*Net message from client calls. I made one
problem go away by ignoring SQL*Net message from client calls; do I need to ignore
some more of those calls?

Idle Events Revisited
The new profile leads to an interesting question. Which parts of a profile are safe to
ignore? Can we discard all the so-called idle events?

A thought experiment yields the answer. Imagine sitting
down with my user. You’re appointed to help this guy.
Look him square in the eye, and try to convince him that
22.181 seconds of his intolerably long 31.761-second
experience is “idle time,” time that’s not your Oracle
Database’s fault, and so therefore it’s not your fault either.

...It’s not going to work, is it? Your job doesn’t end with
absolving your database or yourself; it ends with finding
the root cause of a real business problem and then either
fixing it or explaining why it makes more economic sense
not to.

So, which parts of a profile are safe to ignore? If your
profile matches the end user’s experience, then the answer
is simple: you can ignore only the events whose
contributions to the experience duration were
inconsequential. In other words, you can’t ignore any
events that contribute significant time to the profile, no
matter what they’re called.

The Method R Profiler helps you prioritize your attention in three ways:

• Sorting — The Profiler sorts response time contributions in descending order of
duration. You need to pay the most attention to the top lines of a profile.

• Color — The Profiler uses color to attract your attention to the data you should pay
attention to first.

• Elision — The Profiler aggregates inconsequential response time contributors to save
your mind the bother of consciously ignoring long lists of information you shouldn’t
be looking at.

Analyzing the Profile Report
My adjusted trace file does describe the user’s experience, so it’s finally time for the fun
part: figuring out how I can help make my user’s program go faster. To do that, I’ll use
both the Method R Profiler and the Method R Tools suite. The Profiler, as you’ve already
seen, produces a fixed-format HTML report that uses color to attract attention and
hyperlinks to help me navigate across different levels of detail. The MR Tools suite gives
me flexibility beyond what the Profiler offers, and it produces copy-and-paste friendly
plain text output, which is easy to use in reports like the one you’re reading right now.

© 2012 Method R Corporation 9
Revised 2012-12-20

If a duration
dominates your user’s
performance
experience, then you
have to pay attention
to it, no matter what
it’s called.

I’ll begin, as I did before, with the Profiler. The first section, which I’ve already shown
you, is the profile by subroutine:

Profile	
 by	
 subroutine	
 for	
 the	
 user’s	
 32-­‐second	
 experience.

This table shows that 69.8% of the user’s 31.761-second experience was consumed by
SQL*Net message from client time. You know now that this is time that the Oracle kernel
process spends blocked on read syscalls, awaiting input from its client program. I can’t
ignore these calls, because they were an important part of my end user’s experience.

Now it’s time to figure out what exactly this client program is trying to do. I can learn
more by looking at the profile by SQL statement section.

Profile	
 by	
 SQL	
 statement	
 for	
 the	
 user’s	
 32-­‐second	
 experience.

This table shows that just one SQL statement has consumed 99.2% of the total response
time. Clearly this is the statement to target for the next phase of my analysis. The next
section in the Profiler output is a profile showing the relationships among Oracle
cursors. It shows me the contexts in which this statement appears.

© 2012 Method R Corporation 10
Revised 2012-12-20

Profile	
 by	
 Cursor	
 for	
 the	
 user’s	
 32-­‐second	
 experience.

In this case, the statement appears in only one context: as a parent with child and
grandchild cursors listed on lines 2 through 4. Sometimes the same statement will show
up as a child of several different cursors. Statements like « commit » or « select sysdate
from dual » commonly work this way. My profile by cursor table proves that the
dominant statement’s children have durations that are inconsequential, amounting to
only 0.1% of my user’s total response time. The sole focus of my attention thus needs to
be this « select * from video_1 » statement.

I can drill into its details by clicking on the “stats” link in the rightmost column of
row 1. The click takes me to the section of the Profiler output where I can see the profile
for the statement’s 31.505-second contribution to my user’s experience.

Profile	
 by	
 Subroutine	
 for	
 the	
 « select	
 *	
 from	
 video_1	
 »	
 statement	
 that	
 accounted	
 for	
 99.2%	
 of	
 the	
 response	
 time.

This profile looks a lot like the profile for the entire experience, because the statement
accounts for almost all (99.2%) of the total experience. So it comes as no surprise that
the statement’s execution duration is dominated by SQL*Net message from client call
durations as well. There are 75,001 SQL*Net message from client calls attributable to this
statement. Why so many? The statement’s profile by database call shows why.

© 2012 Method R Corporation 11
Revised 2012-12-20

Profile	
 by	
 Database	
 Call	
 for	
 the	
 « select	
 *	
 from	
 video_1	
 »	
 statement	
 that	
 accounted	
 for	
 99.2%	
 of	
 the	
 response	
 time.

The profile by database call for the statement explains exactly the same 31.505 seconds
that the statement’s profile by subroutine call for the statement did, but from a different
perspective—from the database call dimension. The statement’s duration was dominated
(90.7%) by time consumed between database calls. The red 75,001 fetch call count
(row 2) attracts my attention. This program executed 75,001 database fetch calls to
retrieve 150,000 rows.

It looks like the program is fetching just 150,000 / 75,001 ≈ 2 rows at a time, but from
the Profiler output alone, I can’t prove it. The application could have fetched, for
example, 42 rows per call for 3,571 calls, 18 rows on one call, and 0 rows on
71,429 calls. On my MR Tools console, I can run a quick “Rows returned by dbcall”
report that shows exactly what I want to know without having to look through the raw
trace data myself:
Rows	
 returned	
 by	
 dbcall
mrskew	
 -­‐-­‐name=dbcall	
 -­‐-­‐select=$row	
 -­‐-­‐slabel=ROWS	
 -­‐-­‐precision=0	
 "…/slow-­‐mrcallrm.trc"	

2012-­‐11-­‐28T17:31:25.000431-­‐0600
Elapsed:	
 6.440000	
 s

CALL-­‐NAME	
 	
 	
 	
 	
 ROWS	
 	
 	
 	
 	
 	
 	
 %	
 	
 	
 CALLS	
 	
 MEAN	
 	
 MIN	
 	
 MAX
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐	
 	
 -­‐-­‐-­‐
FETCH	
 	
 	
 	
 	
 	
 150,000	
 	
 100.0%	
 	
 75,001	
 	
 	
 	
 	
 2	
 	
 	
 	
 1	
 	
 	
 	
 2
PARSE	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 0.0%	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 0	
 	
 	
 	
 0	
 	
 	
 	
 0
XCTEND	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 0.0%	
 	
 	
 	
 	
 	
 	
 9	
 	
 	
 	
 	
 0	
 	
 	
 	
 0	
 	
 	
 	
 0
CLOSE	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 0.0%	
 	
 	
 	
 	
 	
 	
 3	
 	
 	
 	
 	
 0	
 	
 	
 	
 0	
 	
 	
 	
 0
EXEC	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 0.0%	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 0	
 	
 	
 	
 0	
 	
 	
 	
 0
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐	
 	
 -­‐-­‐-­‐
TOTAL	
 (5)	
 	
 150,000	
 	
 100.0%	
 	
 75,015	
 	
 	
 	
 	
 2	
 	
 	
 	
 0	
 	
 	
 	
 2

This table proves that the program fetched 150,000 rows, two at a time:

• The mean number of rows returned by each fetch call was 2.

• The minimum number of rows returned by a fetch call was 1.

• The maximum number of rows returned by a fetch call was 2.

So, this program fetched 150,000 rows, two at a time. No wonder it’s spending so much
time between database calls: the application executes a network roundtrip every time it
makes a database call, and with 75,001 fetch calls, that’s a lot of roundtrips. Even
though the average call latency is small (0.000296 seconds per SQL*Net message from
client call), there are so many calls that their total duration adds up to over
28.5 seconds.

How much time could I save if I could reduce the number of roundtrips?

© 2012 Method R Corporation 12
Revised 2012-12-20

Predicting the Improvement
If I can retrieve more than two rows per fetch call, I should be able to eliminate some
network roundtrips. Eliminating some roundtrips should reduce the duration of my
user’s response time experience, but how much time savings should I expect? Your boss
(your consulting client, etc.) will want to know that before he decides to let you have a
go at the solution.

To create such an estimate, the first report I run is the MR Tools “Response time
histogram for a given call name pattern” report. This will show me any skew in my call
latencies that I might need to know about. Here is the report that I ran to see skew in
SQL*Net message from client latencies. I modified the report to show only those calls
associated with the SQL id of the « select * from video_1 » query that I learned from the
Profiler accounted for 99.2% of the user’s response time experience:
Response	
 time	
 histogram	
 for	
 given	
 call	
 name	
 pattern	
 (modified)
mrskew	
 -­‐-­‐rc=p10	
 -­‐-­‐name=SQL*Net	
 message	
 from	
 client	
 -­‐-­‐where=$sqlid	
 eq	
 "0f44xtf7g083u"	
 "…/slow-­‐mrcallrm.trc"	

2012-­‐11-­‐28T17:52:11.000289-­‐0600
Elapsed:	
 6.440000	
 s

	
 	
 	
 	
 	
 	
 	
 	
 RANGE	
 {min	
 ≤	
 e	
 <	
 max}	
 	
 	
 DURATION	
 	
 	
 	
 	
 	
 	
 %	
 	
 	
 CALLS	
 	
 	
 	
 	
 	
 MEAN	
 	
 	
 	
 	
 	
 	
 MIN	
 	
 	
 	
 	
 	
 	
 MAX
-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
	
 1.	
 	
 	
 	
 	
 0.000000	
 	
 	
 	
 	
 0.000001	
 	
 	
 0.000000	
 	
 	
 	
 0.0%	
 	
 	
 	
 	
 	
 	
 1	
 	
 0.000000	
 	
 0.000000	
 	
 0.000000
	
 2.	
 	
 	
 	
 	
 0.000001	
 	
 	
 	
 	
 0.000010	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 3.	
 	
 	
 	
 	
 0.000010	
 	
 	
 	
 	
 0.000100	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 4.	
 	
 	
 	
 	
 0.000100	
 	
 	
 	
 	
 0.001000	
 	
 20.218516	
 	
 	
 91.2%	
 	
 74,756	
 	
 0.000270	
 	
 0.000196	
 	
 0.000994
	
 5.	
 	
 	
 	
 	
 0.001000	
 	
 	
 	
 	
 0.010000	
 	
 	
 0.519500	
 	
 	
 	
 2.3%	
 	
 	
 	
 	
 207	
 	
 0.002510	
 	
 0.001002	
 	
 0.009754
	
 6.	
 	
 	
 	
 	
 0.010000	
 	
 	
 	
 	
 0.100000	
 	
 	
 1.443090	
 	
 	
 	
 6.5%	
 	
 	
 	
 	
 	
 37	
 	
 0.039002	
 	
 0.010216	
 	
 0.095116
	
 7.	
 	
 	
 	
 	
 0.100000	
 	
 	
 	
 	
 1.000000	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 8.	
 	
 	
 	
 	
 1.000000	
 	
 	
 	
 10.000000	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 9.	
 	
 	
 	
 10.000000	
 	
 	
 100.000000	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

10.	
 	
 	
 100.000000	
 1,000.000000	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

11.	
 1,000.000000	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +∞	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 TOTAL	
 (11)	
 	
 22.181106	
 	
 100.0%	
 	
 75,001	
 	
 0.000296	
 	
 0.000000	
 	
 0.095116

I already knew there were 75,001 calls averaging 296 microseconds (μs) apiece, but
here I can see more detail. If I could eliminate 37 especially slow calls, I’d eliminate
1.443 seconds from my user’s experience, but the interesting bucket is the 20 seconds
spent on 74,756 calls lasting between 100 μs and 1 ms each. The overwhelming
majority of my user’s SQL*Net message from client time was spent on calls lasting less
than 1 ms apiece. This looks like a demand (call count) problem not a supply (latency)
problem.

So, how can I reduce SQL*Net message from client call demand? By changing the
application. If I can cause each fetch call to retrieve, say, 100 rows per call, the fetch
call count for this statement should drop from 150,000 / 2 ≈ 75,001 to 150,000 / 100 ≈
1,501. This, in turn, should eliminate 75,001 − 1,501 = 73,500 SQL*Net message from
client calls from my user’s experience. If everything else including the roundtrip
latencies remains constant, then I would expect response time to improve as shown in
the following table.

Predicting	
 the	
 experience	
 duration	
 change	
 that	
 will	
 accompany	
 the	
 call	
 count	
 change.

BaselineBaselineBaseline PredictedPredictedPredicted

Subroutine
Call

count
Duration
(seconds)

Call
count

Duration
(seconds)

SQL*Net message from client
(0.000296 seconds each)

75,002 22.181 1,502 0.445

Other 9.58 9.58

Total 31.761 10.025

© 2012 Method R Corporation 13
Revised 2012-12-20

That is, if I can find a way to increase the array fetch size from 2 to 100, then I think I
can make my user’s 32-second experience run in just 10 seconds. I believe it’s worth a
try.

The Fix
My user ran his program—just one statement—in sqlplus, so the repair was easy. Here’s
what it looked like before:

set	
 pagesize	
 2	
 	
 timing	
 on	
 	
 termout	
 off
select	
 *	
 from	
 video_1;

And here’s what it looked like after:
set	
 pagesize	
 2	
 	
 timing	
 on	
 	
 termout	
 off	
 	
 arraysize	
 100
select	
 *	
 from	
 video_1;

What trips people up sometimes is that the only way to fix this problem is to change the
source code for the program itself. There’s no database setting that fixes this problem.

What	
 you	
 need	
 to	
 look	
 up	
 in	
 your	
 programming	
 documentation	
 to	
 set	
 your	
 Oracle	
 array	
 fetch	
 size.

Language/tool
Keywords pertaining to Oracle
array fetch size manipulation

sqlplus arraysize

Java setFetchSize

PHP oci_set_prefetch

Perl RowCacheSize

Python arraysize

C OCIStmtFetch nrows

C++ setPrefetchRowCount

Visual Basic FetchSize

C# Fetchsize

Ruby OCI_ATTR_PREFETCH_ROWS

Oracle SQL Developer “Sql Array Fetch Size”

My next step will be to run the improved program and measure its duration, of course,
by tracing it. This time, I’ll properly scope the trace file, so I won’t have to spend time
with another mrcallrm step. The key is to activate tracing immediately before running
the statement I’m measuring, and then deactivate tracing immediately when the
statement completes. Here’s the whole thing in sqlplus:1

set	
 pagesize	
 2	
 	
 timing	
 on	
 	
 termout	
 off	
 	
 arraysize	
 100
exec	
 dbms_monitor.session_trace_enable(null,	
 null,	
 true,	
 true)
select	
 *	
 from	
 video_1;
exit

I could also have created a perfectly scoped trace file by executing the script within
Oracle SQL Developer, with the Method R Trace extension installed and activated.
Either way, I will end up with a perfectly scoped trace file, but by using MR Trace, I’d
get the added benefit of the tool automatically copying the file to my laptop. Even when
I trace programs from outside SQL Developer, I use MR Trace to fetch my Oracle trace
files.

© 2012 Method R Corporation 14
Revised 2012-12-20

1 You can simulate this case yourself by defining a view called video_1 defined as « select *
from dba_source where rownum <= 150000 ».

Results of the Fix
The results of the fix are spectacular:

Before:	
 profile	
 by	
 subroutine	
 for	
 the	
 user’s	
 32-­‐second	
 experience	
 with	
 array	
 fetch	
 size	
 set	
 to	
 2.

After:	
 profile	
 by	
 subroutine	
 for	
 the	
 user’s	
 program	
 after	
 changing	
 the	
 array	
 fetch	
 size	
 to	
 100.

I had hoped that the duration would fall from 31 seconds to 10, but this fix performed
even better than that: duration fell to just 1.884 seconds. That’s an elimination of 94%
of the original time my user spent waiting on his result.

These things can happen on a good day.

Why was the improvement even better than I had predicted? Let’s look at the profiles
line-by-line:

• The first line in the original profile, SQL*Net message from client duration, dropped
from 22.181 seconds to 1.268 seconds, a savings of about 21 seconds. I had figured
that the total response time of SQL*Net message from client calls would drop from
22.181 seconds to 0.445 seconds, so I missed by about 0.8 seconds. The per-call
latency did not remain constant; it rose from 296 μs to 844 μs, but my estimate was
materially accurate because the call count behaved exactly as I had predicted, from
75,002 calls to 1,502 calls.

• The second row in the original profile, unaccounted-for between dbcalls, dropped
from 6.292 seconds to just 0.166 seconds, a savings of over 6 seconds. The average
latency stayed in the tens-of-microseconds range, but the call count fell from 150,038

© 2012 Method R Corporation 15
Revised 2012-12-20

to 3,010 because of the reduction in the fetch and SQL*Net message from client call
counts.

• The third row in the original profile, unaccounted-for within dbcalls, dropped from
2.584 seconds to 0.136 seconds, a savings of another 2.4 seconds. Again, the average
latency stayed in the tens-of-microseconds range, and the call count fell from 75,101
to 1,581 because of the fetch call count reduction.

These three profile improvements describe the difference between a program that makes
its user wait so long that he loses focus, and a program that takes only a couple of
seconds to finish.

The Profiler shows what the fix did at the statement level.

Profile	
 by	
 database	
 call	
 for	
 original	
 « select	
 *	
 from	
 video_1	
 »	
 statement,	
 using	
 an	
 array	
 fetch	
 size	
 of	
 100.

This is what I had expected: only 1,501 fetch calls to retrieve all 150,000 rows. Finally,
MR Tools confirms that the fix did indeed change the array fetch size as I had intended:
Rows	
 returned	
 by	
 dbcall
mrskew	
 -­‐-­‐name=dbcall	
 -­‐-­‐select=$row	
 -­‐-­‐slabel=ROWS	
 -­‐-­‐precision=0	
 "…/fast.trc"	

2012-­‐11-­‐29T16:36:42.000982-­‐0600
Elapsed:	
 1.503000	
 s

CALL-­‐NAME	
 	
 	
 	
 	
 ROWS	
 	
 	
 	
 	
 	
 	
 %	
 	
 CALLS	
 	
 MEAN	
 	
 MIN	
 	
 MAX
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐	
 	
 -­‐-­‐-­‐
FETCH	
 	
 	
 	
 	
 	
 150,000	
 	
 100.0%	
 	
 1,501	
 	
 	
 100	
 	
 	
 	
 1	
 	
 100
PARSE	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 0.0%	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 0	
 	
 	
 	
 0	
 	
 	
 	
 0
XCTEND	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 0.0%	
 	
 	
 	
 	
 	
 9	
 	
 	
 	
 	
 0	
 	
 	
 	
 0	
 	
 	
 	
 0
CLOSE	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 0.0%	
 	
 	
 	
 	
 	
 3	
 	
 	
 	
 	
 0	
 	
 	
 	
 0	
 	
 	
 	
 0
EXEC	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 0.0%	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 0	
 	
 	
 	
 0	
 	
 	
 	
 0
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐-­‐	
 	
 -­‐-­‐-­‐	
 	
 -­‐-­‐-­‐
TOTAL	
 (5)	
 	
 150,000	
 	
 100.0%	
 	
 1,515	
 	
 	
 	
 99	
 	
 	
 	
 0	
 	
 100

...And so the story ends.

Final Thoughts
Now that I’ve focused your attention for so many pages on the plight of a poor array
fetch size, you might feel compelled to go check your application for array fetch size
problems. I hope you won’t…. Why not? Because I could have chosen any of thousands
of problems that you might have—for instance, involving bad user interface design, or
an impossibly unrealistic data design, or poorly written SQL, or badly configured
hardware. Should you have to check for all those problems right now, too? Is checking
and verifying everything that could possibly be wrong with a system the only way to
confirm its efficiency?

That’s no way to live.

I’ve been a performance analyst for Oracle-based systems since 1989. The most
important thing I’ve learned about this job is the importance of connecting my analysis

© 2012 Method R Corporation 16
Revised 2012-12-20

with the end-user experience. One of the most frustrating scenarios for a business is
when a user feels performance pain, but the performance monitoring dashboards show
that everything is a-okay. I need to see an objective measurement of exactly where my
user’s time is going. Oracle’s extended SQL trace files give me the measurements I need,
but I also need excellent tools to extract the information that those files have to tell me.

My company, Method R Corporation, creates tools that help you connect directly with
your end-users’ performance experiences. Method R Trace is our extension for Oracle
SQL Developer that collects and retrieves perfectly scoped trace files with no extra
clicks. For trace files that come to you without perfect scoping, two programs in the
Method R Tools suite—mrskew and mrcallrm—make it easy to identify and fix scoping
errors. When your trace file maps to the experience you’re analyzing, The Method R
Profiler shows you exactly where your user’s time has gone. It uses color to attract your
attention to the right data, hyperlinks to guide your navigation, and elision to keep you
from wasting your time on things that don’t matter. When you require data mining
beyond what the Profiler provides, mrskew gives you remarkably broad capabilities.

Profiling began in computer science as a procedure that developers executed upon their
code to reveal where their code path was spending its time. Profiling helps you prevent
bad code from reaching your production system. It helps you fix problems in
production systems. Profiling as a habit throughout the software development life cycle
serves as an excellent early detection system for performance problems. The magic of
profiling is that it shows you how your code spends your users’ time, no matter where
that is. You don’t have to know in advance what problems to go looking for; the profile
takes you right to where the time is being consumed.

Profiling offers another tremendous advantage over traditional dashboard applications.
Because the profile so closely connects you to the user’s experience, it’s much easier to
predict—directly in hours, minutes, and seconds—how much time you’ll be able to
save by working on a given program. This allows you to know in advance how much
benefit you can expect for a proposed investment into a remedy activity. If you’re a
consultant, it’s how you can estimate the value of a benefit that you’ll be proposing for
your client to pay for. It’s also how you’ll know when you’ve reached the limit on tuning
a program. When a program is efficient already, you need to know that so you won’t
waste time trying to “tune” it. The profile can show you that.

Further Reading
Millsap, Cary. 2012. “The Method R Profiling Ecosystem” at http://method-r.com/blog/
191-the-method-r-profiling-ecosystem

A blog post describing how the software tools in the Method R Workbench software
package fit together to help programmers write faster, more efficient programs.

Millsap, Cary. 2011. “Mastering Oracle Trace Data” at http://method-r.com/courses/
trace-data-masterclass

A 1-day course taught by Cary Millsap covering Oracle extended SQL trace files, and
Method R Trace and Method R Tools software in detail.

Millsap, Cary. 2011. “Mastering performance with Oracle extended SQL trace” at http://
method-r.com/downloads/doc_view/72-mastering-performance-with-extended-sql-
trace?tmpl=component&format=raw

This paper explains details about collecting and interpreting Oracle extended SQL
trace files.

© 2012 Method R Corporation 17
Revised 2012-12-20

http://method-r.com%20/software/mrtrace
http://method-r.com%20/software/mrtrace
http://method-r.com/software/mrtools
http://method-r.com/software/mrtools
http://method-r.com/software/profiler
http://method-r.com/software/profiler
http://method-r.com/software/profiler
http://method-r.com/software/profiler
http://method-r.com/blog/191-the-method-r-profiling-ecosystem
http://method-r.com/blog/191-the-method-r-profiling-ecosystem
http://method-r.com/blog/191-the-method-r-profiling-ecosystem
http://method-r.com/blog/191-the-method-r-profiling-ecosystem
http://method-r.com/courses/trace-data-masterclass
http://method-r.com/courses/trace-data-masterclass
http://method-r.com/courses/trace-data-masterclass
http://method-r.com/courses/trace-data-masterclass
http://method-r.com/downloads/doc_view/72-mastering-performance-with-extended-sql-trace?tmpl=component&format=raw
http://method-r.com/downloads/doc_view/72-mastering-performance-with-extended-sql-trace?tmpl=component&format=raw
http://method-r.com/downloads/doc_view/72-mastering-performance-with-extended-sql-trace?tmpl=component&format=raw
http://method-r.com/downloads/doc_view/72-mastering-performance-with-extended-sql-trace?tmpl=component&format=raw
http://method-r.com/downloads/doc_view/72-mastering-performance-with-extended-sql-trace?tmpl=component&format=raw
http://method-r.com/downloads/doc_view/72-mastering-performance-with-extended-sql-trace?tmpl=component&format=raw

Millsap, Cary. 2010. “Thinking clearly about performance” at http://method-r.com/
downloads/doc_view/44-thinking-clearly-about-performance?
tmpl=component&format=raw

This paper explains fundamental principles that make performance problem solving
and prevention simpler and more reliable.

Millsap, Cary; Holt, Jeff. 2003. Optimizing Oracle Performance. Sebastopol CA:
O’Reilly

This book describes a reliable, repeatable, and deterministic method for isolating
Oracle system performance problems. It focuses on the one statistic that truly
matters: response time as seen by the users of a system.

About Method R Corporation
Method R Corporation was founded in 2008 by Oracle performance specialist Cary
Millsap. We help companies of all sizes get the best possible value out of their software
application systems. We sell industrial strength software such as the products featured in
this paper, education courses for developers and database administrators, and a wide
range of consulting services. We are the creators of the method called “Method R,”
as originally documented in the book Optimizing Oracle Performance, for which our
own Cary Millsap and Jeff Holt were named Oracle Magazine Authors of the Year.

Method	
 R	
 Corporation
Southlake,	
 Texas
United	
 States	
 of	
 America
http://method-r.com
info@method-r.com
@MethodR

© 2012 Method R Corporation 18
Revised 2012-12-20

http://method-r.com/downloads/doc_view/44-thinking-clearly-about-performance?tmpl=component&format=raw
http://method-r.com/downloads/doc_view/44-thinking-clearly-about-performance?tmpl=component&format=raw
http://method-r.com/downloads/doc_view/44-thinking-clearly-about-performance?tmpl=component&format=raw
http://method-r.com/downloads/doc_view/44-thinking-clearly-about-performance?tmpl=component&format=raw
http://method-r.com/downloads/doc_view/44-thinking-clearly-about-performance?tmpl=component&format=raw
http://method-r.com/downloads/doc_view/44-thinking-clearly-about-performance?tmpl=component&format=raw
http://www.amazon.com/gp/product/059600527X/ref=as_li_tf_tl?ie=UTF8&tag=methodrcom-20&linkCode=as2&camp=217153&creative=399353&creativeASIN=059600527X
http://www.amazon.com/gp/product/059600527X/ref=as_li_tf_tl?ie=UTF8&tag=methodrcom-20&linkCode=as2&camp=217153&creative=399353&creativeASIN=059600527X
http://method-r.com/software
http://method-r.com/software
http://method-r.com/courses
http://method-r.com/courses
http://method-r.com/consulting
http://method-r.com/consulting
http://www.assoc-amazon.com/e/ir?t=methodrcom-20&l=as2&o=1&a=059600527X
http://www.assoc-amazon.com/e/ir?t=methodrcom-20&l=as2&o=1&a=059600527X
http://method-r.com
http://method-r.com
mailto:Info@method-r.com
mailto:Info@method-r.com
http://twitter.com/@MethodR
http://twitter.com/@MethodR

